Statistical agglomeration: peak summarization for direct infusion lipidomics
نویسندگان
چکیده
MOTIVATION Quantification of lipids is a primary goal in lipidomics. In direct infusion/injection (or shotgun) lipidomics, accurate downstream identification and quantitation requires accurate summarization of repetitive peak measurements. Imprecise peak summarization multiplies downstream error by propagating into species identification and intensity estimation. To our knowledge, this is the first analysis of direct infusion peak summarization in the literature. RESULTS We present two novel peak summarization algorithms for direct infusion samples and compare them with an off-machine ad hoc summarization algorithm as well as with the propriety Xcalibur algorithm. Our statistical agglomeration algorithm reduces peakwise error by 38% mass/charge (m/z) and 44% (intensity) compared with the ad hoc method over three datasets. Pointwise error is reduced by 23% (m/z). Compared with Xcalibur, our statistical agglomeration algorithm produces 68% less m/z error and 51% less intensity error on average on two comparable datasets. AVAILABILITY The source code for Statistical Agglomeration and the datasets used are freely available for non-commercial purposes at https://github.com/optimusmoose/statistical_agglomeration. Modified Bin Aggolmeration is freely available in MSpire, an open source mass spectrometry package at https://github.com/princelab/mspire/.
منابع مشابه
Mass Spectrometry-based Lipidomics and Its Application to Biomedical Research
Lipidomics, a branch of metabolomics, is the large-scale study of pathways and networks of all cellular lipids in biological systems such as cells, tissues or organisms. The recent advance in mass spectrometry technologies have enabled more comprehensive lipid profiling in the biological samples. In this review, we compared four representative lipid profiling technoligies including GC-MS, LC-MS...
متن کاملLipidomics: quest for molecular lipid biomarkers in cardiovascular disease.
Lipidomics is the comprehensive analysis of molecular lipid species, including their quantitation and metabolic pathways. The huge diversity of native lipids and their modifications make lipidomic analyses challenging. The method of choice for sensitive detection and quantitation of molecular lipid species is mass spectrometry, either by direct infusion (shotgun lipidomics) or coupled with liqu...
متن کاملAutomated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics.
This article presents the strategies underlying the automated identification and quantification of individual lipid molecular species through array analysis of multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) data, which are acquired directly from lipid extracts after direct infusion and intrasource separation. The automated analyses of individual lipid molecular species in...
متن کاملHigh-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry.
Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, ...
متن کاملExpression Profiling of Nonpolar Lipids in Meibum From Patients With Dry Eye: A Pilot Study
Purpose The purpose of this investigation was to characterize differentially expressed lipids in meibum samples from patients with dry eye disease (DED) in order to better understand the underlying pathologic mechanisms. Methods Meibum samples were collected from postmenopausal women with DED (PW-DED; n = 5) and a control group of postmenopausal women without DED (n = 4). Lipid profiles were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 29 19 شماره
صفحات -
تاریخ انتشار 2013